Monocrystalline silicon

Monocrystalline silicon (or “single-crystal silicon”, “single-crystal Si”, “mono c-Si”, or just mono-Si) is the base material for silicon chips used in virtually all electronic equipment today. Mono-Si also serves as photovoltaic, light-absorbing material in the manufacture of solar cells. It consists of silicon in which the crystal lattice of the entire solid is continuous, unbroken to its edges, and free of any grain boundaries. Mono-Si can be prepared intrinsic, consisting only of exceedingly pure silicon, or doped, containing very small quantities of other elements added to change its semiconducting properties. Most silicon monocrystals are grown by the Czochralski process into ingots of up to 2 meters in length and weighing several hundred kilogrammes. These cylinders are then sliced into thin wafers of a few hundred microns for further processing. Single-crystal silicon is perhaps the most important technological material of the last few decades—the “silicon era”, because its availability at an affordable cost has been essential for the development of the electronic devices on which the present day electronic and informatic revolution is based. Monocrystalline silicon differs from other allotropic forms, such as the non-crystalline amorphous silicon—used in thin-film solar cells, and polycrystalline silicon, that consists of small crystals, also known as crystallites.

Leave a Comment